
Date of publication August 25, 2023

Digital Object Identifier TBD

A comparative study of algorithms to determine
the K-Nearest Neighbours
PRATIGYA PAUDEL1, SUSHANK GHIMIRE1
1Institute of Engineering, Thapathali Campus, Bagmati 44600 Nepal (e-mail: pratigyapaudel0@gmail.com)

Corresponding author: Pratigya Paudel (e-mail: pratigyapaudel0@gmail.com).

"This work was completed as a part of a college practical for Data Mining (CT725).”

ABSTRACT KD-Tree is a powerful data structure that finds its utility in optimizing searches and retrievals in
multi-dimensional spaces. In this study, we delve into the realm of KD-Trees by applying them to the analysis
of the Iris dataset, which encompasses data points defined by three distinct features. The primary objective is
to exploit the KD-Tree’s ability to accelerate searches and nearest neighbor queries within multi-dimensional
datasets. By constructing a KD-Tree from the Iris dataset and effectively partitioning the data points, we
aim to enhance the efficiency of various spatial operations. This experiment involves creating a KD-Tree
to efficiently organize the Iris dataset in a hierarchical manner. Each node within the KD-Tree delineates a
specific region in the multi-dimensional space defined by the features. We are particularly interested in how
KD-Trees expedite nearest neighbor searches, making them an invaluable asset when dealing with complex
data structures. We will finally look at ball trees, that outperform both the brute-force algorithm and the KD
trees for building KNN models quickly.

INDEX TERMS KD Tree, Nearest Neighbour, Supervised Machine Learning

I. INTRODUCTION

KDTree is a binary tree structure where each node
represents a k-dimensional point. Nodes in this

tree can be seen as generating a dividing hyperplane that
partitions space into two segments, often referred to as half-
spaces. Data points situated on the left side of this hyperplane
are associated with the left subtree of the node, while those on
the right side are linked to the right subtree. The choice of the
hyperplane’s orientation is determined by the node’s specific
dimension association within the tree.

More precisely, every node in the k-d tree corresponds to
one of the k dimensions, and the hyperplane aligned with this
dimension’s axis is orthogonal to it. For instance, if the dimen-
sion associated with the "x" axis is selected for a particular
division, data points with smaller "x" values compared to the
node would be located within the left subtree. Conversely,
data points with larger "x" values would be situated in the
right subtree. In this scenario, the hyperplane’s position is de-
termined by the x value of the point, and its normal direction
coincides with the unit x-axis. KD-Tree is an effective data
structure for performing nearest neighbor search efficiently in
multi-dimensional spaces. This method significantly reduces
the search space and accelerates the retrieval of the closest
data point to a given query point.
A Ball Tree is a data structure used in machine learning

and computational geometry for nearest neighbor search and
range query operations. It’s particularly well-suited for high-
dimensional spaces where the distribution of data points is
uneven or non-uniform. The Ball Tree organizes the data
points in a hierarchical structure, where each node represents
a bounding hypersphere containing a subset of the data points.
The splitting process involves selecting a center point and
calculating the radius such that all data points within the
hypersphere are enclosed. This structure efficiently partitions
the data space and allows for faster nearest neighbor searches
by quickly identifying regions that potentially contain the
nearest neighbors. Ball Trees are advantageous in scenarios
where the data is irregularly distributed and Euclidean space
might not be the most suitable metric. However, constructing
a Ball Tree can be more computationally intensive compared
to KDTrees, especially in lower-dimensional spaces. Overall,
Ball Trees provide an effective way to accelerate nearest
neighbor searches in high-dimensional datasets with non-
uniform distributions.
The Iris dataset is a well-known and frequently used dataset
in the field of machine learning and statistics. It contains
information about various attributes of iris flowers belonging
to three different species: Setosa, Versicolor, and Virginica.
In this modified version of the Iris dataset, the number of
features has been pruned to three, providing a concise repre-

1

Pratigya et al.: A comparative study of algorithms to determine the K-Nearest Neighbours

sentation of the data. The three retained features are typically
the sepal length, sepal width, and petal length of the flowers.
By focusing on these three features, the pruned Iris dataset
maintains its ability to discriminate between different iris
species while reducing the complexity introduced by addi-
tional attributes. This trimmed dataset is still highly valuable
for classification using KD tree.

II. METHODOLOGY
A. THEORY
A KD-Tree (K-Dimensional Tree) is a data structure used
for efficient k-nearest neighbor (k-NN) search. It organizes
data points in a hierarchical manner, partitioning the space
into regions. At each node, a splitting hyperplane is defined
perpendicular to a chosen dimension, dividing data points
into two subsets. During search, the tree is traversed by
comparing the query point’s coordinates to the hyperplane,
allowing for efficient pruning of search paths. This process
minimizes the number of distance calculations, enabling KD-
Trees to swiftly identify the k-nearest neighbors based on
their proximity in the feature space.
In the brute-force technique for k-nearest neighbor (k-NN)
search, each query point is compared to all data points in
the dataset. Distances between the query point and every
data point are calculated, and the k-nearest neighbors are
determined by selecting the points with the smallest distances.
This method exhaustively evaluates all data points, making it
straightforward but computationally expensive, particularly
for large datasets and high dimensions. While conceptually
simple, the brute-force approach becomes less efficient as the
dataset size increases, as it involves computing distances to all
points regardless of their actual proximity to the query point.
The KD-Tree algorithm relies on the concept of splitting
hyperplanes to efficiently organize data points. At each node
of the tree, a hyperplane is established perpendicular to a
chosen dimension. This division separates the data points
into two subsets, facilitating focused search operations. The
dimension to split along is determined by the depth of the
tree, creating a hierarchical structure that guides the search
process.
Computing the distance between a query point and data points
is fundamental in KD-Tree k-NN search. Themost commonly
used metric is the Euclidean distance formula. By calculating
the distance based on the coordinates of each point, the al-
gorithm gauges their relative proximity. This allows the KD-
Tree to identify potential neighbors efficiently and rank them
based on their distances.
During traversal of the KD-Tree, a critical optimization in-
volves pruning unnecessary branches. This is achieved by
comparing the distance from the query point to the splitting
hyperplane with the current minimum distance to a known
neighbor. If the distance exceeds the minimum, the algorithm
can confidently discard that branch of the tree, avoiding
unnecessary computations and focusing on potential nearest
neighbors.
The order in which nodes of the KD-Tree are traversed plays

a pivotal role in the algorithm’s efficiency. The traversal order
is determined by comparing the query point’s coordinates to
the value of the splitting hyperplane at the current node. If
the query point’s coordinate along the splitting dimension is
smaller than the node’s value, the algorithm proceeds to the
left subtree; otherwise, it moves to the right subtree. This
strategic traversal ensures that relevant portions of the tree are
explored first, enhancing the likelihood of finding accurate
nearest neighbors quickly.

B. ALGORITHM FOR KD TREE
Input: Dataset data, Current depth depth
Output: Root of KD-Tree
If data is empty:

Return null
axis← depth mod number of dimensions
Sort data along axis
median← middle element of sorted data
node← new KD-Tree node
node.value← median
node.left ← build_kd_tree(data[: median index], depth+
1)
node.right ← build_kd_tree(data[median index + 1 :
], depth+ 1)
Return node

C. ALGORITHM FOR BRUTE FORCE APPROACH
Input: Query point q, Dataset data, Number of neigh-
bors k
Output: List of k nearest neighbors
Initialize an empty list neighbors
For each data point p in data:

Calculate the distance between q and p
Add (p, distance) to neighbors

Sort neighbors based on distance in ascending order
Select the first k elements from neighbors as the k
nearest neighbors
Return k nearest neighbors

D. ALGORITHM FOR BALL TREES
Input: Query point q, Dataset data, Number of neigh-
bors k
Output: List of k nearest neighbors
Initialize an empty list neighbors
For each data point p in data:

Calculate the distance between q and p
Add (p, distance) to neighbors

Sort neighbors based on distance in ascending order
Select the first k elements from neighbors as the k
nearest neighbors
Return k nearest neighbors

E. TIME COMPLEXITY OF THE APPROACHES
Brute Force Method:
The time complexity for a single query point in the brute force

2

Sushank et al.: A comparative study of algorithms to determine the K-Nearest Neighbours

KNN method is O(N × d), where N is the number of data
points and d is the number of dimensions.
KD Tree:
The KD tree-based KNN method has an average time com-
plexity ofO(logN) for querying the k nearest neighbors once
the KD tree is constructed. Constructing the KD tree initially
takes O(N × logN) time.
Ball Trees:
The time complexity of constructing a ball tree is typically
around O(N logN), where N represents the number of data
points. This complexity arises from the recursive partitioning
process that involves calculating bounding hyper-spheres for
subsets of the data. The actual time taken may be influenced
by the data’s dimensionality and distribution. The process
aims to efficiently organize the data to enable faster nearest
neighbor queries.

F. MATHEMATICAL FORMULAE
1) Calculation of Euclidean Distance
Euclidean distance is a measure of the straight-line distance
between two points in a multi-dimensional space. It is a
commonly used distance metric in various fields to quantify
the similarity or dissimilarity between data points.

The Euclidean distance between two points p =
(p1, p2, . . . , pn) and q = (q1, q2, . . . , qn) in n-dimensional
space can be calculated using the following formula:

Euclidean Distance =

√√√√ n∑
i=1

(qi − pi)2 (1)

G. INSTRUMENTATION TOOLS
The entirety of the process is done using Python. Google
Colab, short for Google Colaboratory, is an online platform
provided by Google for running and sharing Jupyter notebook
environments and it was used for all of the coding. Google
colab provides a number of built-in functions for data analy-
sis. The dataset is loaded through scikit-learn and visualized
using pandas. The results are then visualized using different
visualization tools like Seaborn and matplotlib.

H. WORKING PRINCIPLE
1) Dataset Collection
The dataset used for the comparison of speed between the two
approaches has been the popular iris dataset. The first three
features, namely sepal length, sepal width, and petal length of
the flowers have been extracted to train the models with.

2) Brute-Force Algorithm
Training the brute forcemodel for k-nearest neighbors (KNN)
involves building a direct and straightforward approach to
classify data points. During training, the algorithm simply
memorizes the entire training dataset, creating a reference
to each data point and its corresponding class label. This
reference allows the algorithm to quickly access the dataset
during the classification phase. While the brute force method

is conceptually simple and doesn’t involve complex optimiza-
tion, it can be computationally intensive and less efficient as
the dataset size grows. The classification step in this method
involves calculating the distance between the query point and
all data points in the dataset, selecting the k-nearest neighbors
based on distance, and determining the majority class among
those neighbors.

3) KD Tree
Training the k-nearest neighbors (KNN) model using a KD
tree introduces a more efficient approach to classification
by optimizing the search for nearest neighbors. Unlike the
brute force method, the KD tree constructs a balanced binary
tree that partitions the feature space into smaller regions,
facilitating quicker nearest neighbor searches. During the
construction phase, the algorithm recursively selects pivot
points along different dimensions to create a hierarchical
tree structure. This tree significantly reduces the number of
distance calculations required during classification. When
a query point is provided, the KD tree traversal efficiently
narrows down the search space by navigating the tree based
on the pivot points. As a result, the KNN algorithm only
evaluates distances for points located in the vicinity of the
query, minimizing computation. The KD tree method is par-
ticularly advantageous in high-dimensional spaces where the
brute force approach becomes computationally prohibitive.
By optimizing the search process, the KD tree enhances the
speed and efficiency of KNN classification without compro-
mising accuracy.

4) Ball Tree
Diverging from the brute force method, the ball tree con-
structs a hierarchical structure that encompasses the dataset
through bounding hyperspheres, resulting in faster proxim-
ity searches. During the creation phase, the algorithm iter-
atively selects pivot points to generate a tree that encapsu-
lates data points within these hyperspheres. This innovative
structure effectively diminishes the number of distance cal-
culations necessary during classification. When a query point
is presented, the ball tree navigation efficiently prunes the
search area by navigating through the tree’s nested hyper-
spheres. Consequently, the KNN algorithm only calculates
distances for points enclosed within the vicinity of the query,
significantly curtailing computational burden. The ball tree
strategy is particularly effective in scenarios involving high-
dimensional spaces, where the brute force method’s effi-
ciency diminishes. By optimizing the search process, the
ball tree method elevates the velocity and effectiveness of
KNN classification, all while maintaining the precision and
reliability of the model.

III. RESULTS
A. BRUTE FORCE KNN
The results from Brute Force KNN displayed a long waiting
time for obtaining the predictions. The time needed to query
a given point using Brute-force KNN came out to be around

3

Pratigya et al.: A comparative study of algorithms to determine the K-Nearest Neighbours

0.047 seconds. This waiting time resulted in accuracy of
93.3%. The plot for the data points and the query points can
be used to visualize the way nearest neighbours are selected.
Clearly, the data points nearest to the query points are selected
as the nearest neighbours.

B. KD TREE
While there is no build time for Brute-force KNN, the highest
amount of time taken in a KD tree is when building it. From
the results, KD tree took 0.0048 seconds to build, which is still
a lot faster than the time needed for Brute-force KNN to query
a result. The query time once the tree is built is almost non-
existent. The KD tree approach surpasses the accuracy of the
Brute-force algorithm to reach new heights of 98% accuracy.
The partition space created by the points while building the
KD tree can be visualized. Also, the tree can be visualized
in itself as well. The KD tree also helps separate the areas
for the different classes which can help classify a given point
with more ease.

C. BALL TREE
Ball tree took the performance of the model to new heights
with much improved time to build the tree and to query a
point. It took roughly 0.004 seconds to build the ball tree from
the scratch and the time taken for k-NN query came down to
less than 0.000017 seconds. The tree, like the KD tree can be
visualized with its nodes and branches as well. The accuracy
for the approach is still quite high at 95%.

IV. DISCUSSION AND ANALYSIS
The comparison between Brute Force KNN, KD Tree, and
Ball Tree methods for nearest neighbor search reveals intrigu-
ing insights into their performance. Brute Force KNN demon-
strated accurate predictions but exhibited a drawback in terms
of query time, taking around 0.047 seconds. However, this
approach achieved an accuracy of 93.3%. In contrast, the KD
Tree approach showcased remarkable efficiency by reducing
query time to nearly negligible levels once the tree was built,
though the build time was 0.0048 seconds. This approach
excelled in accuracy, reaching 98%. The visualization of the
KD tree’s partition spaces and structure emphasized its ability
to segregate classes and assist in accurate classifications.

The Ball Tree method emerged as a game-changer, signif-
icantly improving both build and query times. Constructing
the ball tree took a mere 0.004 seconds, and querying a point
required less than 0.000017 seconds. This striking efficiency
didn’t come at the cost of accuracy, with the model achieving
an impressive 95% accuracy. Visualization of the ball tree,
akin to KD tree, illustrated its hierarchical structure. These
results indicate that advanced tree-basedmethods, such as KD
Tree and Ball Tree, offer substantial advantages over Brute
Force KNN in terms of efficiency and accuracy. The disparity
in performance arises from their inherent data structure and
partitioning strategies, allowing KD Tree and Ball Tree to
significantly accelerate the nearest neighbor search process
while maintaining or even improving predictive accuracy.

This stays in line with the theory on KD trees and Ball trees.
However, ball trees are known to be more computationally
heavy on smaller datasets than KD trees.

V. CONCLUSION
In summary, the comparison and analysis of the Brute Force
KNN, KD Tree, and Ball Tree methods for nearest neighbor
search provide valuable insights into the trade-offs between
accuracy and efficiency within this essential machine learn-
ing task. The Brute Force KNN method, although accurate,
reveals its limitations through prolonged query times, making
it less suitable for scenarios demanding rapid response times.
On the other hand, the KD Tree method introduces a sig-
nificant improvement in efficiency by substantially reducing
query times once the tree is constructed, culminating in an
impressive accuracy rate of 98%. The visualization of the KD
Tree’s partitioned spaces highlights its capacity to effectively
separate data points and enhance classification accuracy.
Surprisingly, the Ball Tree method outshines expectations

by achieving a balance between rapid tree construction and
query times, resulting in a remarkable improvement in both
efficiency and accuracy. Its ability to construct the tree in
approximately 0.004 seconds and query a point in under
0.000017 seconds showcases its potential for real-time ap-
plications. Visualizing the Ball Tree’s hierarchical structure
emphasizes its effective representation of data relationships,
contributing to its superior performance.
In light of these findings, it is evident that the choice of

the nearest neighbor search method must be made judiciously
based on the specific demands of the application.While Brute
Force KNN remains a reliable choice for accuracy-focused
tasks, KD Tree and Ball Tree methods provide efficient al-
ternatives for scenarios demanding faster response times and
processing large datasets. This exploration underscores the
significance of algorithm selection in achieving a harmo-
nious balance between accuracy and efficiency, driving the
advancements of machine learning in practical applications.

VI. REFERENCES
• David Bowser-Chao and Debra L. Dzialo. "Comparison

of the use of nearest neighbours and neural networks
in top-quark detection." Physical Review D, vol. 47,
no. 5, pp. 1900–1905, Mar. 1993. doi: 10.1103/phys-
revd.47.1900.

4

Sushank et al.: A comparative study of algorithms to determine the K-Nearest Neighbours

PRATIGYA PAUDEL is a fourth year student,
studying computer engineering under IOE, Tha-
pathali Campus. She has been involved in a lot
of machine learning projects and has a keen eye
for data analysis and AI related stuff. With the
enthusiasm for Artificial Intelligence (AI), she is
driven by the potential of AI to transform industries
and tackle complex challenges. Her academic jour-
ney has equipped her with a strong foundation in
AI concepts, including machine learning and data

analysis. She possesses a relentless curiosity and is always eager to explore
the latest advancements in AI. Her goal is to apply her knowledge and make
a meaningful contribution in the field.

SUSHANK GHIMIRE is a fourth year student,
studying computer engineering under IOE, Thap-
athali Campus. He possesses a lot of interest, work-
ing with data. His educational path has provided
him with a solid understanding of AI concepts,
encompassing machine learning and data analysis.
He possesses an unwavering curiosity and is con-
stantly eager to delve into the latest advancements
in AI. His objective is to leverage his knowledge
and expertise to create a significant impact in the

field.

5

Pratigya et al.: A comparative study of algorithms to determine the K-Nearest Neighbours

APPENDIX
A. TABLES

TABLE 1. Instances from the Iris Dataset

Sepal Length Sepal Width Petal Length Class
5.1 3.5 1.4 Setosa
4.9 3.0 1.4 Setosa
4.7 3.2 1.3 Setosa
7.0 3.2 4.7 Versicolor
6.4 3.2 4.5 Versicolor
6.9 3.1 4.9 Versicolor
6.3 3.3 6.0 Virginica
5.8 2.7 5.1 Virginica
7.1 3.0 5.9 Virginica

B. FIGURES AND PLOTS

FIGURE 1. System Block Diagram

6

Sushank et al.: A comparative study of algorithms to determine the K-Nearest Neighbours

FIGURE 2. Dataset Distribution

FIGURE 3. KNN formation using Brute-force algorithm

7

Pratigya et al.: A comparative study of algorithms to determine the K-Nearest Neighbours

FIGURE 4. Query and Build times for KD tree and Brute-force algorithm

FIGURE 5. Partition Space Visualization using KD Trees

8

Sushank et al.: A comparative study of algorithms to determine the K-Nearest Neighbours

FIGURE 6. KD Tree Decision Boundary Visualization

FIGURE 7. KD Tree Visualization

9

Pratigya et al.: A comparative study of algorithms to determine the K-Nearest Neighbours

FIGURE 8. Ball Tree Visualization

10

Sushank et al.: A comparative study of algorithms to determine the K-Nearest Neighbours

C. CODING

1 #Import necessary libraries
2 import numpy as np
3 import time
4 import sys
5 import matplotlib.pyplot as plt
6 from sklearn.datasets import load_iris
7 import networkx as nx
8 from sklearn.datasets import load_iris
9 from sklearn.model_selection import train_test_split
10 from sklearn.metrics import accuracy_score
11 from collections import Counter
12 import time
13 import matplotlib.pyplot as plt
14

15 #Brute Force method
16 def brute_force_knn(train_X, train_y, test_X, k):
17 predictions = []
18 for test_point in test_X:
19 distances = np.sqrt(np.sum((train_X - test_point)**2, axis=1))
20 nearest_indices = np.argsort(distances)[:k]
21 nearest_labels = train_y[nearest_indices]
22 most_common = Counter(nearest_labels).most_common(1)
23 predictions.append(most_common[0][0])
24 return np.array(predictions)
25

26 #Time for predicting
27 k_neighbors = 3
28 iris = load_iris()
29 X = iris.data[:, :3] # Truncate to 3 features
30 y = iris.target
31 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
32

33 start_time = time.time()
34 brute_force_predictions = brute_force_knn(X_train, y_train, X_test, k_neighbors)
35 brute_force_time = time.time() - start_time
36 accuracy1 = accuracy_score(y_test,brute_force_predictions)
37

38 #Brute Force Visualization for 2 features
39 plt.figure(figsize=(10, 6))
40

41 # Plot all data points with colors according to classes
42 for class_num in np.unique(iris_target):
43 class_indices = np.where(iris_target == class_num)
44 plt.scatter(iris_data[class_indices, 0], iris_data[class_indices, 1], label=f'Class {class_num}')
45

46 # Plot query point
47 plt.scatter(query_point[0], query_point[1], color='blue', marker='o', s=100, label='Query Point')
48

49 # Draw circles to indicate distance for k-NN points
50 for idx in knn_indices:
51 circle = Circle((knn_data[0][0], knn_data[0][1]), radius=distances[idx], color='gray', fill=False, linestyle='dotted')
52 plt.gca().add_patch(circle)
53

54 plt.xlabel('Sepal Length')

11

Pratigya et al.: A comparative study of algorithms to determine the K-Nearest Neighbours

55 plt.ylabel('Sepal Width')
56 plt.legend()
57 plt.grid(True)
58 plt.show()
59

60 #KD Tree
61

62 class Node:
63 def __init__(self, point, left=None, right=None):
64 self.point = point
65 self.left = left
66 self.right = right
67

68

69 def build_kdtree(points, depth=0):
70 if len(points) == 0:
71 return None
72

73 k = points.shape[1]
74 #k = 3
75 axis = depth % k
76 sorted_points = points[points[:, axis].argsort()]
77 median_idx = len(sorted_points) // 2
78 median_point = sorted_points[median_idx]
79

80 left_points = sorted_points[:median_idx]
81 right_points = sorted_points[median_idx + 1:]
82

83 return Node(
84 median_point,
85 build_kdtree(left_points, depth + 1),
86 build_kdtree(right_points, depth + 1)
87)
88

89 def _distance(p1, p2):
90 return np.sqrt(np.sum((p1 - p2)**2))
91

92 def nearest_neighbor(tree, query, depth=0, best=None):
93 if tree is None:
94 return best
95

96 if best is None or _distance(query, tree.point) < _distance(query, best.point):
97 best = tree
98

99 k = query.shape[0]
100 axis = depth % k
101

102 if query[axis] < tree.point[axis]:
103 return nearest_neighbor(tree.left, query, depth + 1, best)
104 else:
105 return nearest_neighbor(tree.right, query, depth + 1, best)
106

107 def visualize_kdtree_3d(node, graph, parent=None, side=None, depth=0):
108 if node is None:
109 return
110

12

Sushank et al.: A comparative study of algorithms to determine the K-Nearest Neighbours

111 graph.add_node(tuple(node[0]), depth=depth)
112 if parent is not None:
113 graph.add_edge(tuple(parent[0]), tuple(node[0]), side=side)
114

115 k = len(node[0]) # Number of dimensions
116 axis = depth % k
117

118 visualize_kdtree_3d(node[1], graph, node, 'left', depth + 1)
119 visualize_kdtree_3d(node[2], graph, node, 'right', depth + 1)
120

121 G = nx.Graph()
122 visualize_kdtree(iris_kdtree, G)
123

124 # Position the nodes for better visualization
125 pos = nx.spring_layout(G, seed=42)
126

127 # Draw the tree structure
128 plt.figure(figsize=(10,6))
129 nx.draw(G, pos, with_labels=True, node_size=300, node_color='teal', font_size=5, font_color='black')
130 plt.title("KD-Tree Visualization")
131 plt.show()
132

133 #Plot 3d partitioning space
134 def plot_tree(ax, node, xmin, xmax, ymin, ymax, zmin, zmax, depth=0):
135 if node is None:
136 return
137

138 k = len(node.point)
139 axis = depth % k
140

141 if axis == 0:
142 ax.plot([node.point[0], node.point[0]], [ymin, ymax], [zmin, zmax], color='green', linewidth=0.8)
143 plot_tree(ax, node.left, xmin, node.point[0], ymin, ymax, zmin, zmax, depth + 1)
144 plot_tree(ax, node.right, node.point[0], xmax, ymin, ymax, zmin, zmax, depth + 1)
145 elif axis == 1:
146 ax.plot([xmin, xmax], [node.point[1], node.point[1]], [zmin, zmax], color='green', linewidth=0.8)
147 plot_tree(ax, node.left, xmin, xmax, ymin, node.point[1], zmin, zmax, depth + 1)
148 plot_tree(ax, node.right, xmin, xmax, node.point[1], ymax, zmin, zmax, depth + 1)
149 else:
150 ax.plot([xmin, xmax], [ymin, ymax], [node.point[2], node.point[2]], color='green', linewidth=0.8)
151 plot_tree(ax, node.left, xmin, xmax, ymin, ymax, zmin, node.point[2], depth + 1)
152 plot_tree(ax, node.right, xmin, xmax, ymin, ymax, node.point[2], zmax, depth + 1)
153

154 fig = plt.figure()
155 ax = fig.add_subplot(111, projection='3d')
156

157 ax.scatter(iris_data[:, 0], iris_data[:, 1], iris_data[:, 2], c='red', label='Data Points', alpha=0.5)
158 ax.set_xlabel('Feature 1')
159 ax.set_ylabel('Feature 2')
160 ax.set_zlabel('Feature 3')
161

162 plot_tree(ax, iris_kdtree,
163 min(iris_data[:, 0]), max(iris_data[:, 0]),
164 min(iris_data[:, 1]), max(iris_data[:, 1]),
165 min(iris_data[:, 2]), max(iris_data[:, 2]))
166

13

Pratigya et al.: A comparative study of algorithms to determine the K-Nearest Neighbours

167 plt.legend()
168 plt.show()
169

170 #Comparison of time
171 build_times_kdtree = []
172 query_times_kdtree = []
173 query_times_bruteforce = []
174

175 data_sizes = [20,40,60,80,100,120,150]
176

177 for num_points in data_sizes:
178 data_points = iris_data[:num_points]
179

180 # Build a KD-Tree
181 start_time = time.time()
182 knn_kdtree = KNeighborsClassifier(n_neighbors=1, algorithm='kd_tree')
183 knn_kdtree.fit(data_points, np.zeros(num_points)) # Dummy labels for building KD-Tree
184 build_time = time.time() - start_time
185 build_times_kdtree.append(build_time)
186

187 # Perform nearest neighbor queries using KD-Tree
188 query_points = iris_data[num_points:num_points+1000]
189 total_query_time_kdtree = 0
190 for query_point in query_points:
191 start_time = time.time()
192 knn_kdtree.kneighbors([query_point])
193 query_time = time.time() - start_time
194 total_query_time_kdtree += query_time
195 average_query_time_kdtree = total_query_time_kdtree / 1000
196 query_times_kdtree.append(average_query_time_kdtree)
197

198 # Perform nearest neighbor queries using Brute-Force
199 total_query_time_bruteforce = 0
200 for query_point in query_points:
201 start_time = time.time()
202 min_distance = np.inf
203 for train_point in data_points:
204 distance = np.linalg.norm(train_point - query_point)
205 if distance < min_distance:
206 min_distance = distance
207 query_time = time.time() - start_time
208 total_query_time_bruteforce += query_time
209 average_query_time_bruteforce = total_query_time_bruteforce / 1000
210 query_times_bruteforce.append(average_query_time_bruteforce)
211

212 # Plot the empirical time complexity
213 plt.figure(figsize=(10, 6))
214

215 # Plot build times
216 plt.plot(data_sizes, build_times_kdtree, label='KD-Tree Build Time', color='blue', marker='o', linestyle='-', linewidth=2)
217

218 # Plot query times
219 plt.plot(data_sizes, query_times_kdtree, label='KD-Tree Query Time', color='green', marker='s', linestyle='--', linewidth=2)
220 plt.plot(data_sizes, query_times_bruteforce, label='Brute-Force Query Time', color='red', marker='^', linestyle='--', linewidth=2)
221

222 plt.xlabel('Number of Data Points (n)')

14

Sushank et al.: A comparative study of algorithms to determine the K-Nearest Neighbours

223 plt.ylabel('Time (seconds)')
224 legend_handles = [
225 plt.Line2D([], [], color='black', marker='o', markersize=10, label='THA076BCT029\nTHA076BCT047',alpha = 0), # Remove the scatterplot marker from the legend
226]
227 plt.legend(handles=legend_handles, loc='upper left', bbox_to_anchor=(0.7, 1.1), ncol=len(legend_handles), handlelength=0.4, borderpad=0.07)
228 plt.grid(True, linestyle='--', alpha=0.7)
229 plt.tight_layout()
230 plt.show()
231

232

233 # Ball Tree Imlementation
234 import numpy as np
235 import time
236 import matplotlib.pyplot as plt
237 from sklearn.datasets import load_iris
238 import networkx as nx
239

240 class BallNode:
241 def __init__(self, center, radius, left=None, right=None, points=None):
242 self.center = center
243 self.radius = radius
244 self.left = left
245 self.right = right
246 self.points = points
247

248 # Build the Ball Tree
249 # Build the Ball Tree
250 def build_balltree(points, min_points=5):
251 points = np.array(points) # Convert points to a NumPy array
252

253 if len(points) == 0:
254 return None
255

256 center = np.mean(points, axis=0)
257 radius = max(np.linalg.norm(point - center) for point in points)
258

259 if len(points) <= min_points:
260 return BallNode(center, radius, points=points)
261

262 left_points = []
263 right_points = []
264

265 split_dim = np.argmax(np.ptp(points, axis=0))
266 sorted_points = points[np.argsort(points[:, split_dim])]
267 median_idx = len(sorted_points) // 2
268 median_point = sorted_points[median_idx]
269

270 for point in sorted_points:
271 if point[split_dim] < median_point[split_dim]:
272 left_points.append(point)
273 else:
274 right_points.append(point)
275

276 return BallNode(center, radius, build_balltree(left_points), build_balltree(right_points))
277

278

15

Pratigya et al.: A comparative study of algorithms to determine the K-Nearest Neighbours

279 # Query the Ball Tree for k nearest neighbors within a given radius
280 # Query the Ball Tree for k nearest neighbors within a given radius
281 def ball_tree_knn(node, query, k, radius, neighbors=None):
282 if neighbors is None:
283 neighbors = []
284

285 if node is None:
286 return neighbors
287

288 dist = np.linalg.norm(query - node.center)
289

290 if dist <= radius + node.radius:
291 if node.points:
292 for point in node.points:
293 neighbors.append(point)
294 if len(neighbors) >= k:
295 return neighbors
296 else:
297 neighbors = ball_tree_knn(node.left, query, k, radius, neighbors)
298 neighbors = ball_tree_knn(node.right, query, k, radius, neighbors)
299

300 elif query[0] < node.center[0]:
301 neighbors = ball_tree_knn(node.left, query, k, radius, neighbors)
302 else:
303 neighbors = ball_tree_knn(node.right, query, k, radius, neighbors)
304

305 return neighbors
306

307

308 # Load Iris dataset
309 iris = load_iris()
310 iris_data = iris.data[:, :3]
311

312 # Build the Ball Tree from the Iris dataset
313 start_time = time.time()
314 iris_balltree = build_balltree(iris_data)
315 build_time = time.time() - start_time
316

317 # Perform k-NN queries and measure time
318 num_queries = 1000
319 k = 3
320 radius = 0.5
321 query_points = np.random.rand(num_queries, 3)
322

323 total_query_time = 0
324 for query_point in query_points:
325 start_time = time.time()
326 knn_neighbors = ball_tree_knn(iris_balltree, query_point, k, radius)
327 query_time = time.time() - start_time
328 total_query_time += query_time
329

330 average_query_time = total_query_time / num_queries
331

332 print(f"Time taken to build Ball Tree: {build_time:.6f} seconds")
333 print(f"Average time taken for k-NN query: {average_query_time:.6f} seconds")
334

16

Sushank et al.: A comparative study of algorithms to determine the K-Nearest Neighbours

335 # Visualize Ball Tree
336 def visualize_balltree(node, graph, parent=None, side=None, depth=0):
337 if node is None:
338 return
339

340 graph.add_node(tuple(node.center), depth=depth)
341 if parent is not None:
342 graph.add_edge(tuple(parent.center), tuple(node.center), side=side)
343

344 visualize_balltree(node.left, graph, node, 'left', depth + 1)
345 visualize_balltree(node.right, graph, node, 'right', depth + 1)
346

347 G = nx.Graph()
348 visualize_balltree(iris_balltree, G)
349

350 # Position the nodes for better visualization
351 pos = nx.spring_layout(G, seed=42)
352

353 # Draw the tree structure
354 plt.figure(figsize=(10,6))
355 nx.draw(G, pos, with_labels=True, node_size=300, node_color='teal', font_size=5, font_color='black')
356 plt.show()

17

	Introduction
	Methodology
	Theory
	Algorithm for KD Tree
	Algorithm for Brute Force Approach
	Algorithm for Ball Trees
	Time Complexity of the Approaches
	Mathematical Formulae
	Calculation of Euclidean Distance

	Instrumentation Tools
	Working Principle
	Dataset Collection
	Brute-Force Algorithm
	KD Tree
	Ball Tree

	Results
	Brute Force KNN
	KD Tree
	Ball Tree

	Discussion and Analysis
	Conclusion
	References
	Pratigya Paudel
	Sushank Ghimire
	Tables
	Figures and Plots
	Coding

